DIGITAL CONTROLLED SURROUND SOUND MATRIX

- 1 STEREO INPUT
- THREE INDEPENDENT SURROUND MODES ARE AVAILABLE MOVIE, MUSIC AND SIMULATED
- MUSIC: 4 SELECTABLE RESPONSES
- MOVIE AND SIMULATED:

256 SELECTABLE RESPONSES

- TWO INDEPENDENT INPUT ATTENUATORS IN 0.31dB FOR BALANCE FACILITY
- ALL FUNCTIONS PROGRAMMABLE VIA SERIAL BUS

DESCRIPTION

The TDA7346 reproduces surround sound by using phase shifters and a signal matrix. Control of all the functions is accomplished by serial bus.
The AC signal setting is obtained by resistor net-

works and switches combined with operational amplifiers.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{S}	Operating Supply Voltage	10.5	V
$\mathrm{~T}_{\mathrm{amb}}$	Operating Ambient Temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

PIN CONNECTION

THERMAL DATA

Symbol	Description	Value	Unit	
$\mathrm{R}_{\mathrm{th} j \text { j-pins }}$	Thermal Resistance Junction-pins	Max.	85	${ }^{\circ} \mathrm{C} / \mathrm{W}$

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{S}	Supply Voltage	7	9	10.2	V
$\mathrm{~V}_{\mathrm{CL}}$	Max. input signal handling	2			Vrms
THD	Total Harmonic Distortion $\mathrm{V}=1 \mathrm{Vrms} \mathrm{f}=1 \mathrm{KHz}$		0.02	0.1	$\%$
$\mathrm{~S} / \mathrm{N}$	Signal to Noise Ratio V out $=1 \mathrm{Vrms}$ (mode $=$ OFF)		106		dB
$\mathrm{~S}_{\mathrm{C}}$	Channel Separation $\mathrm{f}=1 \mathrm{KHz}$		70		dB

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (refer to the test circuit $T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$,
$R_{G}=600 \Omega$, all controls flat ($G=0$), Effect Ctrl $=-6 \mathrm{~dB}, \mathrm{MODE}=\mathrm{OFF} ; \mathrm{f}=1 \mathrm{KHz}$ unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit

SUPPLY

Vs	Supply Voltage		7	9	10.2	V
Is	Supply Current			10		mA
SVR	Ripple Rejection	Lch / RcH out, Mode = OFF	60	80		dB

INPUT STAGE

$\mathrm{R}_{\\|}$	Input Resistance			100		$\mathrm{~K} \Omega$
$\mathrm{~V}_{\mathrm{CL}}$	Clipping Level		$\mathrm{THD}=0.3 \% ;$ Lin or Rin	2	2.5	
			$\mathrm{THD}=0.3 \% ;$ Rin + Lin (2)		3.0	Vrms
$\mathrm{C}_{\text {RANGE }}$	Control Range			20	Vrms	
$\mathrm{A}_{\mathrm{VMIN}}$	Min. Attenuation		-1	0	1	dB
$\mathrm{~A}_{\text {VMAX }}$	Max. Attenuation			20	dB	
$\mathrm{~A}_{\text {STEP }}$	Step Resolution			0.31		dB
$\mathrm{~V}_{\mathrm{DC}}$	DC Steps	adjacent att. step		0	mV	

EFFECT CONTROL

C RANGE	Control Range		-21		-6	dB
S STEP	Step Resolution			1		dB

ELECTRICAL CHARACTERISTICS (continued) SURROUND SOUND MATRIX

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
GofF	In-phase Gain (OFF)	Mode OFF, Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$ $\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$	-1.5	0	1.5	dB
DGOFF	LR In-phase Gain Difference (OFF)	Mode OFF, Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\left(R_{\text {in }} \rightarrow R_{\text {out }}\right.$,,$\left(L_{\text {in }} \rightarrow L_{\text {out }}\right)$	-1.5	0	1.5	dB
$\mathrm{G}_{\mathrm{Mov} 1}$	In-phase Gain (Movie 1) RPS1, RPS2, RPS3, RPS4 = POR Preset	Movie mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }} \mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		7		dB
$\mathrm{G}_{\text {MOV2 }}$	In-phase Gain (Movie 2) RPS1, RPS2, RPS3, RPS4 = POR Preset	Movie mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}, \mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		8		dB
Dgmov	LR In-phase Gain Difference (Movie)	Movie mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\left(\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}\right)-\left(\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}\right)$		0		dB
$\mathrm{G}_{\text {MUS1 }}$	In-phase Gain (Music 1) RPS1 = POR PRESET	Music mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\left(\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}\right)-\left(\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}\right)$		6		dB
$\mathrm{G}_{\text {MUS2 }}$	In-phase Gain (Music 2) RPS1 = POR PRESET	Music mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}, \mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		7.5		dB
$\mathrm{D}_{\text {GMUS }}$	LR In-phase Gain Difference (Music)	Music mode, Effect Ctrl = -6dB Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\left(\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}\right)-\left(\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}\right)$		0		dB
LMON1	Simulated L Output 1 RPS1, RPS2, RPS3, RPS4 = POR Preset	Simulated Mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of 250 Hz , $1.4 \mathrm{~V}_{\text {p-p }}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		4.5		dB
LMon2	Simulated L Output 2 RPS1, RPS2, RPS3, RPS4 = POR Preset	Simulated Mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of 1 kHz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		-4.0		dB
Lmon3	Simulated L Output 3 RPS1, RPS2, RPS3, RPS4 = POR Preset	Simulated Mode, Effect Ctrl =6dB Input signal of 3.6 kHz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p},}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		7.0		dB
$\mathrm{R}_{\text {MON1 }}$	Simulated R Output 1 RPS1, RPS2, RPS3, RPS4 = POR Preset	Simulated Mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of 250 Hz , $1.4 \mathrm{~V}_{\text {p-p }}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$		-4.5		dB
$\mathrm{R}_{\mathrm{MON} 2}$	Simulated R Output 2 RPS1, RPS2, RPS3, RPS4 = POR Preset	Simulated Mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of 1 kHz , $1.4 \mathrm{~V}_{\text {p-p }}, \mathrm{R}_{\text {in }}$ and $\mathrm{Lin}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$		3.8		dB
RMon3	Simulated R Output 3 RPS1, RPS2, RPS3, RPS4 = POR Preset	Simulated Mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of 3.6 kHz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }} \text { and } \mathrm{L}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$		-20		dB
RLP1	Low Pass Filter Resistance			10		$\mathrm{K} \Omega$
R ${ }_{\text {PS } 1}$	Phase Shifter 1 Resistance	at POR		17.95		k Ω
$\mathrm{R}_{\mathrm{PS} 2}$	Phase Shifter 2 Resistance	at POR		8.465		$\mathrm{K} \Omega$
RPS3	Phase Shifter 3 Resistance	at POR		18.050		$\mathrm{K} \Omega$
RPS2	Phase Shifter 4 Resistance	at POR		18.050		K Ω
RHPI	High Pass Filter Resistance			60		K Ω
RLPF	LP Pin Impedance			10		$\mathrm{K} \Omega$

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit

AUDIO OUTPUTS

$V_{\text {OCL }}$	Clipping Level	$\mathrm{d}=0.3 \%$	2	2.5		Vrms
$R_{\text {OUT }}$	Output resistance		100	200	300	Ω
V OUT	DC Voltage Level		3.5	3.8	4.1	V

GENERAL

No(OFF)	Output Noise (OFF)	$\mathrm{B} w=20 \mathrm{~Hz}$ to 20 KHz $\mathrm{R}_{\text {out }}$ and $\mathrm{L}_{\text {out }}$ measurement	8		$\mu \mathrm{Vrms}$
N (MOV)	Output Noise (Movie)	$\begin{aligned} & \text { Mode }=\text { Movie }, \\ & \mathrm{B}_{\mathrm{w}}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{R}_{\text {out }} \text { and Lout measurement } \\ & \hline \end{aligned}$	30		$\mu \mathrm{Vrms}$
No (MUS)	Output Noise (Music)	$\begin{aligned} & \hline \text { Mode }=\text { Music }, \\ & \mathrm{B}_{\mathrm{w}}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz}, \\ & \mathrm{R}_{\text {out }} \text { and } \mathrm{L}_{\text {out }} \text { measurement } \end{aligned}$	30		$\mu \mathrm{Vrms}$
N (MON)	Output Noise (Simulated)	$\begin{aligned} & \text { Mode }=\text { Simulated, } \\ & \mathrm{B}_{\mathrm{w}}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{R}_{\text {out }} \text { and } \mathrm{L}_{\text {out }} \text { measurement } \\ & \hline \end{aligned}$	30		$\mu \mathrm{Vrms}$
d	Distorsion	$\mathrm{Av}=0$; Vin $=1 \mathrm{Vrms}$	0.02	0.1	\%
Sc	Channel Separation		70		dB

BUS INPUTS

V_{IL}	Input Low Voltage				1	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage		3			V
I_{IN}	Input Current		-5		+5	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage SDA Acknowledge	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$		0.4	0.8	V

Note:
(1) Bass and Treble response: The center frequency and the resonance quality can be choosen by
the external circuitry. A standard first order bass response can be realized by a standard feedback network.
(2) The peak voltage of the two input signals must be less then $\frac{V_{\mathrm{S}}}{2}$:
$(\mathrm{Lin}+\mathrm{Rin})_{\text {peak }} \bullet \mathrm{A}_{\mathrm{Vin}}<\frac{\mathrm{V}_{\mathrm{S}}}{2}$

$\mathrm{I}^{2} \mathrm{C}$ BUS INTERFACE

Data transmission from microprocessor to the TDA7346 and viceversa takes place through the 2 wires $I^{2} C$ BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

Data Validity

As shown in fig. 3, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown in fig. 4 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an ac-
knowledge bit. The MSB is transferred first.

Acknowledge

The master ($\mu \mathrm{P}$) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 5). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.
The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audioprocessor, the $\mu \mathrm{P}$ can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.
This approach of course is less protected from misworking and decreases the noise immunity.

Figure 3: Data Validity on the I^{2} CBUS

Figure 4: Timing Diagram of $I^{2} \mathrm{CBUS}$

Figure 5: Acknowledge on the $\mathrm{I}^{2} \mathrm{CBUS}$

SOFTWARE SPECIFICATION

Interface Protocol
The interface protocol comprises:

- A start condition (s)
- A chip address byte, containing the TDA7346
address (the 8th bit of the byte must be 0). The TDA7346 must always acknowledge at the end of each transmitted byte.
- A sequence of data (N bytes + achnowledge).
- A stop condition (P)

Data Transferred (N-bytes + Acknowledge)
ACK = Acknowledge
S = Start
$P=$ Stop

MAX CLOCK SPEED 100kbits/s

SOFTWARE SPECIFICATION

Chip address

1	1	0	1	1	1	A	0
MSB							LSB

A	CHIP ADDRESS
0	DC (HEX)
1	DE (HEX)

A = Logic level on pin ADDR
$A=1$ if ADDR pin $=$ open
$A=0$ if ADDR pin $=$ connected to ground

Software Specification

MSB							LSB	SUBADDRESS
0	0	A5	A4	A3	A2	A1	A0	INPUT ATTENUATION R
0	1	A5	A4	A3	A2	A1	A0	INPUT ATTENUATION L
1	M1	M0						SURROUND MODES
1	0	0						SIMULATED MODE
1	0	1						MUSIC MODE
1	1	0						MOVIE MODE
1	1	1	1	1	1	1	1	OFF MODE
1	M1	M0	1	B3	B2	B1	B0	EFFECT CONTROL
1	M1	M0	0	0	0	C1	C0	PHASE SHIFTER 4 CONTROL
1	M1	M0	0	0	1	C1	C0	PHASE SHIFTER 3 CONTROL
1	M1	M0	0	1	0	D1	D0	PHASE SHIFTER 2 CONTROL
1	M1	M0	0	1	1	E1	E0	PHASE SHIFTER 1 CONTROL

TDA7346

INPUT ATTENUATION								
MSB							LSB	0.3125 dB STEPS
	I	A5	A4	A3	A2	A1	A0	
0					0	0	0	0
0					0	0	1	-0.3125
0					0	1	0	-0.625
0					0	1	1	-0.9375
0					1	0	0	-1.25
0					1	0	1	-1.5625
0					1	1	0	-1.875
0					1	1	1	-2.1875
								2.5 dB STEPS
0		0	0	0				0
0		0	0	1				-2.5
0		0	1	0				-5
0		0	1	1				-7.5
0		1	0	0				-10
0		1	0	1				-12.5
0		1	1	0				-15
0		1	1	1				-17.5

I = 0 Attenuation Input R
I = 1 Attenuation Input L
Example: to program an R input attenuation equal to -11.25 you have to send 00100100

EFFECT CONTROL (-6/-21dB)								
MSB								
				B3	B2	B1	B0	LSB
1	M1	M0	1	0	0	0	0	1dB STEPS
1	M1	M0	1	0	0	0	1	-6
1	M1	M0	1	0	0	1	0	-7
1	M1	M0	1	0	0	1	1	-8
1	M1	M0	1	0	1	0	0	-9
1	M1	M0	1	0	1	0	1	-10
1	M1	M0	1	0	1	1	0	-11
1	M1	M0	1	0	1	1	1	-12
1	M1	M0	1	1	0	0	0	-13
1	M1	M0	1	1	0	0	1	-14
1	M1	M0	1	1	0	1	0	-15
1	M1	M0	1	1	0	1	1	-16
1	M1	M0	1	1	1	0	0	-17
1	M1	M0	1	1	1	0	1	-18
1	M1	M0	1	1	1	1	0	-19
1	M1	M0	1	1	1	1	1	-20

PHASE SHIFTER 3, 4									
MSB									
						C1	C0		
1	M1	M0	0	0	F	0	0	12.060	
1	M1	M0	0	0	F	0	1	14.450	
1	M1	M0	0	0	F	1	0	18.050	
1	M1	M0	0	0	F	1	1	39.100	

F=0 Phase Shifter 4
F = 1 Phase Shifter 3

PHASE SHIFTER 2										LSB	RESISTOR VALUE (K Ω)
MSB											
						D1	D0				
1	M1	M0	0	1	0	0	0	5.640			
1	M1	M0	0	1	0	0	1	6.770			
1	M1	M0	0	1	0	1	0	8.465			
1	M1	M0	0	1	0	1	1	18.300			

PHASE SHIFTER 1											
MSB										LSB	RESISTOR VALUE (K Ω)
						E1	E0				
1	M1	M0	0	1	1	0	0	11.745			
1	M1	M0	0	1	1	0	1	14.150			
1	M1	M0	0	1	1	1	0	17.950			
1	M1	M0	0	1	1	1	1	37.625			

Example: to program MOVIE MODE with EFFECT control $=-7 \mathrm{~dB}$ with PHASE SHIFTER resistor $=$ $11.745 \mathrm{~K} \Omega$, PHASE SHIFTER 2 resistor $=6.77 \mathrm{~K} \Omega$, PHASE SHIFTER 3 resistor $=12.06 \mathrm{~K} \Omega$, PHASE SHIFTER 4 resistor $=18.05 \mathrm{~K} \Omega$, you have to send in sequence 5 bytes:
11010001
11001100
11001001
11000100
11000010

POWER ON RESET	
INPUT ATTENUATION	-19.375 dB
EFFECT CONTROL	-20 dB
SURROUND MODE	OFF MODE
PHASE SHIFTER 1 RESISTOR VALUE	$17.950 \mathrm{~K} \Omega$
PHASE SHIFTER 2 RESISTOR VALUE	$8.465 \mathrm{~K} \Omega$
PHASE SHIFTER 3, 4 RESISTOR VALUE	$18.050 \mathrm{~K} \Omega$

PIN: HP1

PIN: Lin, Rin

PIN: SCL, SDA

PIN: HP2

PIN: Lout, Rout, REAR

PIN: ADDR

PIN: LP

PIN: CREF

PIN: PS1

PIN: PS3, PS2

PIN: PS2

PIN: LP1

\qquad

SO20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.1		0.3	0.004		0.012
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1	45° (typ.)					
D	12.6		13.0	0.496		0.512
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.4		7.6	0.291		0.299
L	0.5		1.27	0.020		0.050
M			0.75			0.030
S	8° (max.)					

DIP20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
e		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
1			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGSTHOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

